ME1315

COMPUTER SCIENCE & INFORMATION TECHNOLOGY Paper - 2 Series

502; A

Sl.No.; 31

Duration: 150 Minutes

Max. Marks: 300

INSTRUCTIONS TO CANDIDATES

- 1. Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- 2. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.,
- 3. If there is any defect in the Question Paper Booklet or OMR answer sheet, please ask the invigilator for replacement.
- 4. Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen Gel Pen is not permitted in the examination.
- 5. The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball point pen.

Example to fill up the Booklet series

If your test Booklet Series is A, please fill as shown below:

	(1)	{{1,3,5},{1,2,6},{4,7	,8}}	(2)	{{1,3,5},{2,6,7},{	4,8}}
	(3)	{{1,3,5},{2,6},{2,6},	{4,7,8}}	(4)	{{1,5},{2,6},{4,8}	}}
2)	Le	et $S = \{1, 2,, n\}$. Let S_1 be a subsets of S that don't con	the set of all subsentain 1. Which of	ts of St	hat contain 1. Let T_1 depoining statement is corrected.	note the set of rect?
	(1)	$ T_1 = S_1 = 2^{(n-1)}$		(2)	$ T_1 \neq S_1 $	
	(3)	$ T_1 + S_1 = 2^{(n-1)}$		(4)	$ T_1 + S_1 = 2^n$	
3)	0.	t $A = \{0,1\} \times \{0,1\}$ and $B = \{0,1\}$	rder. If $A \times B \times A$	A is listed	sted in lexicographic o in lexicographic order.	rder based on then the next
	(1)	((1,0), a, (0,0))		(2)	((1,1), c, (0,0))	
	(3)	((1,1) a, (0,0))		(4)	((1,1), a, (1,1))	
4)	Let	P(A) denote the power so	et of A . If $P(A) \subseteq$	B then		
	(1)	$2^{ A } \le B \tag{2}$	$) \qquad 2^{ A } \ge B $	(3)	$2^{ A } \ge 2^{ B } \tag{4}$	$2 A \triangleleft B $
5)	The	e inverse of the function f	$f(x) = x^2 - 5$ is			
	(1)	$f^{-1}(y) = \sqrt{y+5}$		(2)	$f^{-1}(y) = \sqrt{y-5}$	
	(3)	$f^{-1}(y) = \sqrt{y} - 5$		(4)	$f^{-1}(y) = \sqrt{y} + 5$	
6)	Let Wh	$D_{30} = \{1,2,3,5,6,10,15,30\}$ ich of the following statem	and let the relation nents is correct?	n/(divid	les) be a partial order rel	ation on D_{30} .
	(1)	All the lower bounds of	10 and 15 are 1,2	2,3,5,6	Marie Control of the Control	in i di
	(2)	All the lower bounds of	10 and 15 are 1,2	2,3,5		
	(3)	All the lower bounds of	10 and 15 are 1,5		Special Special Section 1	
	(4)	All the lower bounds of	10 and 15 are 2,3	,5		
7)	Let of se	P(S) be the power set of S et inclusion induced on $P(S)$	$S = \{1,2,3\}$, and the S). Which of the	en defin followir	ne a lattice L under par ng sets are the sub-lattic	tial ordering $ces of L$.
		$\{\phi, \{1,2\}, \{2,3\}, \{1,2,3\}\}$			$\{\phi, \{1\}, \{1,2\}, \{1,2,3\}$	
	C =	$\{\phi, \{3\}, \{1,3\}, \{1,2,3\}\}$		D =	{{1}, {3}, {1,3}, {1,2	2,3}}
	E =	$\{\phi, \{3\}, \{1,2\}, \{1,2,3\}\}$				8 70.
	(1)	A and D are sub-lattices	of L	(2)	B and C are sub-lattice	ces of L
	(3)	A is a sub-lattice of L		(4)	D is a sub-lattice of L	
3)	In a S	5-variable Boolean function	n, what are the "mi	interms'	"that differ from m ₂₀ by	one literal?
	(1)	m ₀ , m ₅ , m ₁₀ , m ₁₅ , m ₂₅		(2)	m ₄ , m ₈ , m ₁₆ , m ₂₄ , m ₂₈	
	(3)	$m_4, m_{16}, m_{21}, m_{22}, m_{28}$		(4)	m ₄ , m ₂₁ , m ₂₂ , m ₂₄ , m ₂₈	
			5			

-	0	3	1	4
7	0	Z	1	

9)	Give	en the Boolean fur	nction	$J(A, B, C) = \sum_{n \text{ preservity minimum}} (A, B, C)$	0,1,7) + d(2,5,6), mal) represent $J(A)$	which of the	502/A following sum			
	(i)	A'B' + AB	us (no	. necessarily illim	mar) represents (A	i, b, C):				
	(ii)	A'B' + BC								
	(iii)	A'C' + B'C +	AB							
	(iv)	A'B' + AC					historia r			
	(v)	A'B' + ABC								
	(1)	(i), (ii) and (iii)			(2) (iii), (iv) and (v)				
	(3)	(i), (ii), (iv) and	(v)		(4) (i), (ii	i), (iv) and (v	()			
10)	A 01	roup has 11 eleme	nte T	he number of pro	per sub-groups it	can have is				
10)	(1)	0	(2)	4	(3) 5	(4)	8			
	(1)	((1),(2))	(2)		(3)	TALL (3)				
11)					e used to counter ning memory man		n of external			
	(1)	Compaction	(2)	Segmentation	(3) Swappin	g (4)	Splitting			
12)	The	addresses general ords per page and o	ed by	a particular progr e main memory f	ram in a pure dema frame are as follow	and paging sy	ystem with 100			
	0100	0, 0200, 0420, 04	89, 05	10, 0530, 0599, 0	0120, 0220, 0230,	0260, 0320	, 0370			
	The number of page faults generated in order to execute the program is									
	(1)	13	(2)	8	(3) 7	(4)	10			
13)	In th	ne process state tra	nsitio	n diagram transit	ion from running t	o ready state	indicates that			
,10)	In the process state transition diagram, transition from running to ready state indicates that (1) the running process is preempted by a higher priority process									
		(2) the running process initiated an input/output operation								
		(3) the running process is blocked for a semaphore operation								
	(4)									
1.4	XX71.:			C.I on	and of the 15	of my class	14,10			
14)					by memory manag		har anala af tha			
	(1) Keep an account of which parts of memory are currently being used by each of the processes									
	(2)									
	(3)	Allocate and de	-alloca	ite memory space	as needed					
	(4)	Storage allocation	on							
15)	Whi	ch of the followin	g state	ments is incorrec	t with regard to op	erating syste	em design?			
-	(1)		(A) (A) (A) (A)	asy to design and		Anthri Alia u	R. B. I. (EL			
	(2)	Layered approach			ste Nelso-penileggiële					
,	(3)				with microkernel	approach				
	(4)			secure and reliabl						
	51 (81)									

16)	When a process cr structures are sha	eates a new process red between the pa	using the	fork() or ss and the	peration, then which of the following e child process?
	(1) Stack			Неар	
	()	mory Segments	(4)	Stack, He	ap and Shared Memory Segments
17)	(1) User-level t(2) Kernel three(3) User-level t	owing statements is hreads are unknown ads are more expensional hreads are more ex tion uses fewer res	n by the k sive pensive	ernel	
18)	Semaphore can be	e used for	÷		
	(1) detecting de	eadlock		(2)	process synchronization
	(3) process scho			(4)	defining priority of the processes
19)	Which scheduler	controls the degree	of multipr	ogramm	ing?
1. 91	(1) Short-term	scheduler		(2)	Long-term scheduler
	(3) Middle-term	n scheduler		(4)	Disk Scheduler
20)	follows:	o semaphores initia Process P,	lized to 1,	where P_0	, and P_1 are the processes defined as
	1	2			
		wait(Q);			
	wait(Q);	wait(S);			
	;	;			
	0 4	signal(Q);			
		signal(S);		JAO	Milness Space C
					espect to the above construct?
	(1) Causes starv		(2)		ses livelock
	(3) Causes a dea	adlock	(4)	Does	s not ensure mutual exclusion
21)	The number of ad-	dress and data line	s for a mer	norv of	$1K \times 16$ is:
21)	(1) 12 and 16			(2)	10 and 16
	(3) 12 and 12			(4)	16 and 16
			11		11-1 seem = bellected at 100
22)	The instruction of		ed control		
	(1) micro-instruc			(2)	micro-operation
	(3) machine inst	ruction		(4)	micro-program
23)	The bandwidth of	this bus would be cs and the number	e 2 Megab	ytes/sec.	s of 250nsecs each to transfer data. If the cycle time of the bus was for transfer stayed the same what
	(1) 1 Megabyte/	sec		(2)	4 Megabytes/sec
	(3) 8 Megabytes	/sec		(4)	2 Megabytes/sec

31) An interface that provides I/O transfer of data directly to and from the memory unit and

UART (3) USRT (4) Serial Interface

peripheral is termed as

34)			n ginwone	Official forfits	mimates					uclicies:
	(1)	3NF	(2)	BCNF	(3)	4N)	F	(4)	5NF	
33)				restored to th						en rolled
	(1)	Active >	Partially (Committed	(2)	Active	→Coi	mmitted		
	(3)	Active->	Aborted		(4)	Partial	ly Cor	nmitted -	Committed	
34)	Sel	ect distinct A	ACCES 15	and S(C,D); a	and the fol	llowing S	GQL qu	uery.		
		mR,S	1000 0	1.1	. 1					
				he result is gu		to be sai	me as	R.		
				and S is non-	empty					
		R and S h								
				and R is non-						
	(4)	R and Sh	ave the sa	me number of	tuples					
35)		R = (A, B, rect?	(C,D) and	$F = \{A \to B,$	$A \to C$	$BC \to D$)}, the	en which	of the follo	wing is
	(1)	$B \rightarrow D$	(2)	$A \rightarrow B$	(3)	$A \to D$		(4)	$D \rightarrow A$	
36)	Wh	ich one of th	e followin	ng relational a	algebra tr	ansform	ations	s is incorr	ect?	
	(1)	$\sigma_{c1}(\sigma_{c1}(I))$	$(R)) \rightarrow \sigma_{C2}$	$(\sigma_{C2}(R))$		(2)	$\sigma_c($	$\pi_A(R)$) –	$\rightarrow \pi_A(\sigma_C(R))$	
	(3)	$\sigma_c(R \cup S)$	$\sigma_{c}(I) \rightarrow \sigma_{c}(I)$	$(S) \cup \sigma_c(S)$		(4)	$\sigma_c($	$R) \to \pi_A$	(R)	
37)	If relation R has m tuples and S has n tuples, what is the maximum and minimum number									
	of to	uples in $R \bowtie$	1 S?							
	(1)	m+n and	10			(2)	mn	and 0		
	(3)	m+n and	m-n			(4)	mn a	and $m + r$	1	
						dir .				
38)	The	referential i	ntegrity ru	ale requires th	at					
	(1)			key value mus		ce an exi	isting	primary l	cev value.	
	(2)			for an attribu						
	(3)			ign key value						e
	(4)			to delete a ro					THE PARTY OF THE P	
	(+)	matching f	oreign ke	y value in and	other tabl	e.	nose I	линату к	ey does not	nave a
39)	Whi	ch of the fol	lowing sta	atements is co	rrect?					
	(1)			NF is also in E						

Every relation in BCNF is also in 3NF

Every relation is ZNF is also in 3 NF

No relation can be in both BCNF and 3NF

(2) (3)

40) Consider the schedule S and determine which one of the following schedules is conflict equivalent schedule to S. $S: R_1(X); R_2(Z); R_1(Z); R_3(X); R_3(Y); W_1(X); W_3(Y); R_2(Y); W_2(Z); W_2(Y)$ $T1 \rightarrow T2 \rightarrow T3$ (3) $T3 \rightarrow T1 \rightarrow T2$ $T3 \rightarrow T2 \rightarrow T1$ 41) Which one of the following file organization techniques provides very fast direct access? Hashed File Organization (2) B-Tree Organization (3) B+ Tree Organization (4) Indexed-Sequential File Organization Consider the following functions $f(n) = 3n^{\sqrt{n}}$ $g(n) = 2^{\sqrt{n}\log_2 n}$ h(n) = n!h(n)=O(f(n))h(n) is O(g(n))g(n) is not O(f(n))(4) f(n) is O(g(n))43) Which one of the following recurrence relation denotes the running time of selection sort algorithm. T(n) = 2T(n/2) + cn(1) T(n) = T(n-1) + cnT(n) = T(n-1) + cT(n) = 2T(n/2) + cMatch the following: Divide and Conquer Graph Coloring b. Dynamic Programming ii. Travelling Salesperson Problem C. Backtracking iii. Quicksort (1) a:iii; b:i; c:ii a:iii; b:ii; c:i a:ii; b:iii; c:i a:ii; b:i; c:iii Which one of the following statements is correct? 45) i) The Euler tour of a graph can be determined in polynomial time The Hamiltonian cycle can be determined in polynomial time. ii) Determining whether a directed graph has a Euler tour is NP-complete Determining whether a directed graph has a Hamiltonian cycle is NP-complete iv)

(i) and (iv)

(iii) and (iv)

(1)

(3)

(i) and (ii)

(ii) and (iii)

									502/A	
46)	Wh				ents is incorrect?					
	(1)				nomial-time alg	orithm	is fed into the	input o	of another, the	
	(2)	*		720	olynomial ard problem					
	(2)	0 1			oblem has a poly	vnomial	time algorithn	n		
	(4)		-		np-complete	/	8			
47)		ich one of t	he algorit	hme of	otains global opti	mal soli	itions?			
47)	(1)			IIIIIS OC	nams grood opti		Dynamic Pr	ogram	ming	
	(3)			nd Dyi	namic Programm					
40)	0		l. C	1/1	1 10 and a	leads to	hla aanaistina	of O al	ota viboro tho	
48)					$= k \mod 9$ and a					
	collisions are resolved by chaining. If the following keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10, then what are the maximum, minimum and average chain lengths for									
	the g	given instar	ice.							
	(1)	3, 0, and	1 .	(2)	3, 3, and 3	(3)	4, 0, and 1	(4)	3, 0, and 2	
49)				-	depth first search adjacency list?	traversa	al of a graph co	nsisting	g of <i>n</i> vertices	
	(1)			O(n		(3)	$O(n^2)$	(4)	O(mm)	
50)	Wha	at is the time	e complex	rity of	Kruskal's algori	thm for t	finding the mir	nimum	spanning tree	
50)					ng n vertices and		_			
	(1)	O(n)	(2)	O(n	(n+n)	(3)	$O(n^2)$	(4)	$O(m \log n)$	
51)	The maximum window size for data transmission using selective reject protocol with n-bit									
		ne sequence	is							
	(1)	2 ⁿ	(2)	2^{n-1}		(3)	2 ⁿ -1	(4)	2^{n-2}	
52)	Whi	ch of the fo	llowing is	not a	client-server app	lication				
	(1)	Internet c	hat			(2)	Web browsin	ng	4	
	(3)	E-mail				(4)	Ping			
53)	In E	thernet whe	en Manch	ester e	ncoding is used,	the bit r	ate is			
	(1)	Half the b	aud rate			(2)	Twice the ba	ud rate		
	(3)	Same as the	he baud ra	ate		(4)	Thrice the ba	ud rate		
54)	In a	network of	LANs co	nnecte	ed by bridges, p	ackets a	re sent from o	ne LA	N to another	
		_		_	ince more than o	-				
		have to be r ge-routing?	outed thro	ough m	ultiple bridges. V	Why 1s tl	ne spanning tre	e algor	ithm used for	
	(1)		est path ro	uting l	between LANs	(2)	For avoiding lo	ops in th	ne routing paths	
	(3)	For fault to		0		(4)	For minimizing	•		

				502/A
55)		ich of the following functionalities must above the network protocol?	be implen	nented by a transport protocol over
	(1)	Recovery from packet losses	(2)	Detection of duplicate packets
	(3)	Packet delivery in the correct order	(4)	End to end connectivity
56)		organization has a class B network and w net mask would be:	vishes to fo	rm subnets for 64 departments. The
	(1)	255.255.0.0	(2)	255.255.64.0
	(3)	255.255.128.0	(4)	255.255.252.0
	-7-1			
57)	Whatbelo	at is the maximum size of data that the abw?	application	layer can pass on to the TCP layer
	(1)	Any size	(2)	2 ¹⁶ bytes-size of TCP header
	(3)	2 ¹⁶ bytes	(4)	1500 bytes
58)	The IP a	subnet mask for a particular network is addresses could belong to this network	255.255.3	1.0. Which of the following pairs of
	(1)	172.57.88.62 and 172.56.87.233	(2)	10.35.28.2 and 10.35.29.4
	(3)	191.203.31.87 and 191.234.31.88	(4)	128.8.129.43 and 128.8.161.55
59)	and	n IPv4 datagram, the M bit is 0, the value the fragment offset value is 300. The posfirst and the last bytes of the payload, resp	sition of the	datagram, the sequence numbers of
	(1)	Last fragment, 2400 and 2789	(2)	First fragment, 2400 and 2759
	(3)	Last fragment, 2400 and 2759	(4)	Middle fragment, 300 and 689
60)	Cor	nsider different activities related to email		
	m1	: Send an email from a mail client to a m	ail server	
	m2	: Download an email from mailbox serve	er to a mail	client
	m3	: Checking email in a web browser		ybrs - Leocemante all
	Wh	at is the application level protocol used i	n each acti	vity?
	(1)	M1:HTTP m2: SMTP m3:POP	(2)	m1:HSMTP m2: FTP m3:HTTP
	(3)	m1:SMTP m2: POP m3:HTTP	(4)	m1:POP m2: SMTP m3: IMAP

502/A

61)	A computer on a 10 Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16 Megabits. What is the maximum duration for which the computer can transmit at the full 10 Mbps?								
	(1) 1.6 sec	(2) 2	2 sec	(3)	5 sec	С	(4)	8 sec	
62)	The process of further is know		oblem in to	erms of fev	w steps a	and then e	xploring e	ach of the steps	
	(1) step-wise	refinement			(2)	modular	ization		
	(3) Integration	n			(4)	Divide a	nd Conqu	er	
63)	The following	orogram is to	be tested:	for statem	ent cove	erage,			
	begin								
	f(a=b)								
	{								
	S1;								
	exit;								
	}								
	else if (c=d)								
	{								
	s2;							190	
	}								
	else								
	{								
	S3;								
	exit;								
	}								
	s4								
	end								
	The test cases satisfied by the	T1,T2,T3 ar	nd T4 giv	en below	are exp	ressed in values are	terms of	the properties	
	T1: a, b, c &d:						Dil		
	T2: a,b, c & d		ct						
	T3: a=b & c!=								
	T4: a!=b & c=e								
	Which of the to		en below e	ensures co	verage o	of stateme	nt \$1 \$2	\$3 & \$4	
	(1) T1,T2,T3		2,T3	(3)	T3,T		(4)	T1,T2,T4	
	(1) 11,12,13	(2)	,13	(3)	13,1	Tas 1 498	(4)	11,12,14	
(4)	Which of the foll	owing staten	nents is FA	ALSE?					
		over TCP							

(2) HTTP describes the structure of web pages

(4) HTTP can be used to test the validity of a hypertext link

(3) HTTP allows information to be stored in URL

65)	Cor	sider the H	TML tab	le definition	n given bel	ow:					3 1	
	<tal< th=""><th>ole border=</th><th>1></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tal<>	ole border=	1>									
		<td rowspa<="" th=""><th>an=2>ab</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th>an=2>ab</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	an=2>ab								
	<td< th=""><th>colspan=2</th><th>>cb</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	colspan=2	>cb									
		>										
	>	ef <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	>									
	<td< th=""><th>rowspan=2</th><th>2>gh</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	rowspan=2	2>gh	>								
		>										
		<td colspan<="" th=""><th>n=2>ij<th>d></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th></td>	<th>n=2>ij<th>d></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	n=2>ij <th>d></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	d>							
		>										
	<th>ole></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ole>										
	The	number of	rows in	each column	n and the m	umber	of c	columi	is in ea	ch rov	v are:	
	(1)	(2,2,3) at	nd (2,3,2)			(2)	(2,2,3)) and (2,2,3)		
	(3)	(2,3,2) as	nd (2,3,2)			(4)	(2,3,2) and (2,2,3)	1	
66)	The	language r	epresente	ed by the reg	gular expre	ssion 1	*01	1*+1	* + 1*(01*01*	is is	
	(1)			,1} which co								
		(2) All strings over {0,1} which contain at least two zeros.										
	(3)),1} which co								
	(4)	All string	gs over {C),1 } contain	ing exactly	two ze	eros					
67)		SMA/CD, nsmit imme		4th collision	n, what is t	he pro	bab	ility th	at the	node v	vill attempt to	
	(1)	0.0625	(2)	0.5		(3)	0.	125		(4)	0.25s	
68)	2000 elem	OH. The siz	e of the a	array is 100 the content	. If the ind	ex add registe	ress r?		•	d to ac	m the location cess the array 2000H	
	(1)	100	(2)	4		(3)		32		(4)	200011	
69)	Whic	ch of the fo	llowing s	tatements is	incorrect?							
	(1)	Every rec	ursively 6	enumerable	language is	s recurs	sive					
	(2)	The union	of two re	ecursively e	numerable	langua	ages	s is rec	ursivel	ly enur	merable	
	(3)			ecursive lan								
	(4)				_						L is recursive	
70)	The e	ntity integri	tv rule rec	uires that					4)			
	(1)			ies are uniqu	ie							
	(2)	A part of t			1000							
				do not refere	nce primer	Louis						
	(3)					y Key V	aiue	28				
	(4)	Duplicate	object val	ues are allov	weu .							

		302/A
71)		
	L_1L_2*is	
	(1) 0 (2) 1 (3)	2 (4) 3
72)		$b_j i \neq j \}$, then which of the following
	statements is correct?	
	(1) Both L_1, L_2 are regular languages	
	(2) L_1 is Context Free Language but L_2 is Regular	
	(3) L_2 is CFL but L_1 is Regular	
	(4) Both L_1 , L_2 are context free languages	
73)	3) Number of strings in the language represented by the Regu	alar expression $(0+1)(0+1)1(0+1)$ is
	(1) 4 (2) 6 (3)	8 (4) 16
74)	4) The chromatic number of null graph N_n is	
	(1) 0 (2) 1 (3)	2 (4) 3
75)	5) Booth's algorithm is used to signed numbers (2's co	omplement)
	(1) add (2) subtract (3)	multiply (4) divide
76)	A connected graph contains 'n' vertices and 'm' edges the	en circuit rank is
	(1) $n-m$ (2) $m-(n-1)$ (3)	n- $(m-1)$ (4) $m+n$
77)	7) A connected planar graph has 35 regions with degree 6 each,	, then number of vertices is
	(1) 35 (2) 70 (3)	72 (4) 96
78)	3) Which of the following minimal spanning tree algorithm as	ssures connectivity of tree at all steps?
	(1) Kruskal (2) Prims (3) Both K	Cruskal and Prims (4) Dijkstra
79)) If G is a connected plane graph with E edges, V vertices and	d R regions, then the following is true
	(1) $ V - E = 2$ (2)	V - E + R = 1
	(3) $ V - E = 2 + R $ (4)	V + R = E +2
80)	The minimum number of colours required to colour any co	onnected planar graph is
	(1) 3 (2) 4 (3) 5 (4)	Connot decide
81)) The number of ways of placing 7-similar balls in 5 distinct	boxes is
	(1) $C(11,7)$ (2) $C(12,7)$ (3)	C(11,5) (4) C(12,5)

 (3) P(10,2)P(20,3) (4) C(10,2) 83) How many terms will be there in the expansion of (x + y + z)⁶ (1) 15 (2) 28 (3) 35 84) A shift reduce parser generates actions specified in the braces follow grammar S → xxS {PRINT "1"} S → y {PRINT "2"} S → Sz {PRINT "3"} What is the translation of xxxxyzz using the syntax directed translation of xxxxyzz using the xxxxxyzz using the xxxxxyzz using the xxxxxyzz using the xxxxxyzz using the xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	502/A of 2 girls and 3 boys from 10 2)+P(20,3)
 (3) P(10,2)P(20,3) (4) C(10,2) 83) How many terms will be there in the expansion of (x + y + z)⁶ (1) 15 (2) 28 (3) 35 84) A shift reduce parser generates actions specified in the braces follow grammar S → xxS {PRINT "1"} S → y {PRINT "2"} S → Sz {PRINT "3"} What is the translation of xxxxyzz using the syntax directed translation of xxxxyzz using the xxxxxyzz using the xxxxxyzx using the xxxxxyzx using the xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	2)+P(20,3)
 83) How many terms will be there in the expansion of (x + y + z)⁶ (1) 15 (2) 28 (3) 35 84) A shift reduce parser generates actions specified in the braces follow grammar S → xxS {PRINT "1"} S → y {PRINT "2"} S → Sz {PRINT "3"} What is the translation of xxxxyzz using the syntax directed translation of xxxxyzz using the xyntax directed translation of xxxxxyzz using the xyntax directed translation of xxxxxyzz using the xyntax directed translation of xxxxxyzz using the	
 (1) 15 (2) 28 (3) 35 84) A shift reduce parser generates actions specified in the braces follow grammar S → xxS {PRINT "1"} S → y {PRINT "2"} S → Sz {PRINT "3"} What is the translation of xxxxyzz using the syntax directed translation of xxxxyzz using the xxxxyzz using the xxxxyzz using the xxxxyzx using the xxxxyzx using the xxxxxyzx using the xxxxxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	2)C(20,3)
A shift reduce parser generates actions specified in the braces following grammar $S \to xxS \{PRINT "1"\}$ $S \to y \{PRINT "2"\}$ $S \to Sz \{PRINT "3"\}$ What is the translation of $xxxxyzz$ using the syntax directed	
grammar $S \to xxS \{PRINT "1"\}$ $S \to y \{PRINT "2"\}$ $S \to Sz \{PRINT "3"\}$ What is the translation of xxxxyzz using the syntax directed translation of xxxxxyzz using the syntax directed translation of xxxxyzz using the syntax directed translation of xxxxxyzz using the xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(4) 45
$S \rightarrow xxS \{PRINT "1"\}$ $S \rightarrow y \{PRINT "2"\}$ $S \rightarrow Sz \{PRINT "3"\}$ What is the translation of $xxxxyzz$ using the syntax directed translation	
$S \rightarrow Sz$ {PRINT "3"} What is the translation of xxxxyzz using the syntax directed translation of xxxxxyzz using the xxxxxxyzz using the xxxxxxyzz using the xxxxxxyzz using the xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
What is the translation of xxxxyzz using the syntax directed translation	
and the same of th	
(1) 23131 (2) 11231 (3) 33211	tion?
	(4) none of these
Which one of the following is the loader function accomplished by the loading scheme?	e programmer, in an absolute
(i) Allocation (ii) Linking (iii) Realloc	cation
(1) Both (i) and (ii) (2) (i) only (3) (ii) only	y (4) (iii) only
86) Which one of the following statements is correct?	
 In operator precedence parsing precedence relations are def terminal 	ined for every pair of a non-
(2) In operator precedence parsing, precedence relations are define	ed for every pair of a terminal
(3) In operator precedence parsing, precedence relations are def	fined to delimit the handle
(4) In operator precedence parsing precedence relations are defi	ined to delimit a statement
Which of the following statements is correct?	
(i) LR parsers can handle a larger range of languages and gramm	nars than LL parsing
(ii) LR parsers do not backtrack	
(iii) LR parser is a bottom-up parser	
(1) (i) only (2) (ii) only (3) (iii) only	(4) (i), (ii) and (iii)
88) Which of the following is the most powerful parser?	F (5) I (1) .
(1) SLR (2) LALR	
(3) Canonical LR (4) Operat	

				502/A
89)	At	top down parser generates		
	(1)	Right-most derivation	(2)	Right-most derivation in reverse
	(3)	Left-most derivation	(4)	Left-most derivation in reverse
90)	Wh	nich one of the following statements is correct w	ith res	pect to the grammar give below?
	S-	$\rightarrow 1A \mid 1B$		
	A	→1Capebulty list (2) arcess Srl		
	B -	\rightarrow 1		
	(1)	LL(1) and LR(1)	(2)	LL(1) but not LR(1)
	(3)	LR(1) but not LL(1)	(4)	Neither LL(1) not LR(1)
91)	Wh	ich one of the following statements is correct wi	ith resp	pect to the grammar given below?
	E -	$\rightarrow E + T \mid F$ relation Run (2)		
		$\rightarrow T * F \mid F$		
		en algorithms suffers to on Balody's Anomaly! d		
	(1)	Both + and * are right associative	(2)	Both + and * are left associative
	(3)	+ is left associative but * is right associative	(4)	*is left associative but + is right associative
92)	Whi	ch of the following statement is true about Push		Automata(PDA)?
,	(1)	PDAs recognize Context-sensitive Language		NAME OF THE OWNER OWNER OF THE OWNER OWNE
	(2)	PDAs recognize Context-free Languages	.5	
	(3)	PDAs recognize Type 1 Languages		
	(4)	PDAs recognize Type 0 Languages		
	()	and the second of the second o		
93)	Con (A-	sider the grammar $G=(N,T,P,S)$, where $N=\{S, \rightarrow aa\}$, $(A \rightarrow a)$, $(B \rightarrow b)\}$. Which of the following	,A,B}, statem	$T=\{a,b\}, P=\{(S \rightarrow AB), (B \rightarrow ab),$ nent is true about the above grammar.
	(1)	It is Context Sensitive	(2)	It is Context free
	(3)	It is type 0 grammar	(4)	It is unrestricted language
94)	two t	t would be the speed of a processor in terms in types of instructions A and B. Type A instructions 8 clock cycles. Programs on an average use 20% clock rate is of 1 GHz.	take 18	8 clock cycles and type B instructions
	(1)	1000 MIPS	(2)	10 MIPS
	(3)	100 MIPS (2) 60	(4)	10000 MIPS

95)	Consider the following	sequence of C language	statement	c		502/A
,	typedefint - Inte		Statement	all females		
	IntegerPointer A,	(1993) (C)				
	A=(IntegerPoint					
	(sizeof(int));					
	B=(IntegerPointe	er) malloc				
	(sizeof(int));	, maioc				
	- A=5;					
	- B = 17;					
	free (A);					
	A=B;					(1)
	free (B);					
	The above situation whe point to is known as	rein A contains a pointer	pointing t	to the location	that B's point	er used to
	(1) dangling pointer	(2) side effect	(3)	null pointer	(4) free	e pointer
96)	Which of the following p	age replacement algorith	nms suffer	s from Balody	z's Anomaly?	
	(1) Optimal replacement		(2)	LRU	or mornary.	
	(3) FCFS		(4)	Second Cha	nce	
			en tripo ai		wa Allain	
97)	Consider the following s	equence of instructions	of stack b	ased CPU.		
	PUSH b					
	ADD					
	PUSH a					
	PUSH b					
	ADD					
	MUL					
	PUSH c					
	MUL					
	Which of the following is	implemented by the abo	ve sequer	ice?		,
	(1) $2c(a+b)$ (2)	2c2(a+b)	(3)	$c(a^2+b^2)$	(4) c(a+	
	Which of the following is		NA PARAMETER			
98)	Which of the following is	a top-down parser?				
	(1) Predictive recursive	e descent				
	(2) Shift-reduce					
	(3) Canonical LR(1)					
	(4) LALR(1)					

99)	Consider the following code with four valid code words: 0000000000 000001111 11111100000 1111111									
	Wh	nich of the fo	ollowing rrors that	is corre	ect sequence of corrected using	of hamming	distance of the code?	e abov	e code and the	
	(1)				5,2	(3)		(4)	4,3	
100) Lis	t of objects t	ogether v	with the	e operations al	lowed on th	nese objects is o	alled		
	(1)	Capability	list	(2)	access list	(3)	available list	(4) a	ccess matrix	
101) Wh	at is the outp	out of foll	owing	C language co	de?				
	# in	clude								
	<std< td=""><td>dio.h></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></std<>	dio.h>								
	int 1	main ()								
	{									
	stat	ic int $i = 1$;								
	tun	(i);								
	tun	(i);								
	tun	(i);								
	prin	tf("%d", i);								
	}									
	tun ((int i)			X					
	{									
	i++;									
	}									
	(1)	1	(2)	2		(3)	3	(4)	4	
102)	Whi	ch of the foll	owing tre	ee need	not be a binar	y tree				
	(1)	BST		(2)	AVL	(3)	Heap	(4)	B-Tree	
103)	Whie	ch data struc	ture is us	ed to in	nplement radix	sort				
	(1)	Stacks		(2)	Queue	(3)	Linked list	(4)	Tree	
104)	Whice	ch of the follo	wing sou	ting ale	orithm does n	ot have wo	rst case time co	mnlavi	$v \circ f O(r^2)$	
20.,	(1)	Bubble Sor		(2)	Quick Sort	(3)	Insertion Sort			
	(-)			(~)	Zuion Doit	(3)	mon don bort	(+)	Treap Soft	
105)	A dec	cimal number proximately	has 25 di	igits. Th	ne number of bi	its needed fo	or its equivalent	binary r	epresentation	
	(1)	50		(2)	60	(3)	75	(4)	80	

1	_	1	100	100
_	n	7	1	
7	U		1	
•	₹,	And		

							502/A
106) Con	nsider a set $x = \{a$	a,b,c,d.	The numbe	r of binary ope	erations that	can be defined on x is
	(1)	42			(3)		
107) Con	sider the followin	g C progra	im:			
	mair		1,3	Ο.			
	{						
		int x=5;					
		printf("%d,%d					
	}			-,);	71		
		What could be	the output	of the abov	re program?		
	(1)	5,20,5	(2)	4,4,1	(3)	5,20,1	(4) 20,20,5
				, ,,-	(3)	3,20,1	(4) 20,20,3
108)	Acce	ording to the pred nding order of pre	cedence de ecedence.	fined in the	C language, a	irrange the o	perators $., , <, = $ in the
	(1)	., , <, =			(2)	=, <, ,	A Pitter allah
	(3)	=, , <,.				<, , =,	
						5100	
109)	What	t is the output of t	he followin	ng programi	ming C langua	ge code?	
		=1;i<5;++i)					
	if (i=	=3) continue;					
	else						
	printf	("%d", i);					
	(1)	1 2 4 5	(2)	124	(3)	245	(4) 333
110)	If n ha	as the value 3, the	en the state	ment a[++r	n]=n++ results	in	
	(1)	a[5]=3	(2)		(3)		(4) $a[4]=3$
					1VA - 0	1	
111)	Aliasi	ng in the context		ming langu	ages refers to		
	(2)	Multiple variable	s having th	e same valu	ie		
		Multiple variable					
	(4)	Multiple use of th	ne same va	riable			
		detection at the d					
		bit stuffing					
		cyclic redundanc					
	(3)	hamming codes	34.				

equalization

(4)

- 113) In the carrier sense network if the prevailing condition is a 'channel busy', then which of the following statements is correct?
 - (1) Non-persistent CSMA results in randomized wait and sense
 - (2) With 1-persistent CSMA, the channel is continually sensed
 - (3) p-persistent CSMA results in randomized retransmission
 - (4) Non-persistent CSMA does not sense the channel
- 114) The average time required to perform a successful sequential search for an element in an array A(1:n) is given by
 - (1) (n+1)/2
- (2) log,n
- (3) n(n+1)/2
- (4) n

```
int x;
```

```
main()
int x=0;
```

```
int x=10;

x++;

change_x(x);

x++;

modify_x();

printf("%d",x);
```

```
change_x(x);
printf("%d",x);
modify_x();
printf("%d\n",x);
}
modify_x()
{
return (x+=10);
}
change_x()
{
```

return(x+=1);

What would be the output of the above program?

- (1) 23 14 24
- (2) 23 1 1
- (3) 13 1 1
- (4) 12 1

116)	Ave	erage success	ful search	time taken by	v hinary	search o	n a sorta	l accept of	f 10 itama	502/A		
110)	(1)	2.6	(2)	2.7	(3)	2.8	ii a sortec			IS TELL		
	(1)	2.0		bns tisw basi				(4)	2.9			
117)	Wha a so	at is the numb	er of com	parisons requ	ired for	merging	two sort	ed lists o	of sizes ma	and n into		
	(1)	O(m)	(2)	O(n)			- n)	(4)	$O(\log n)$	$+\log m$)		
118)	The A, E	number of bi B, C is	nary trees	with 3 nodes	which w	hen trave	ersed in p	ost-ord	er gives the	sequence		
	(1)	3	(2)	9	(3)	7		(4)	5			
119)	A m	achine needs ded to sort 10	a minimu 0 names v	m of 100 sec vill be approx	to sort l	000 nan	nes by qu	ick sort	. The mini	mum time		
	(1)	50.2	(2)	6.7	(3)	72.7		(4)	11.2			
120)		What is the disadvantage of spiral model?										
	(1)			aller projects								
	(2)	High amou		-								
	(3)			documentation								
	(4)	Additional	functional	ities can be ac	dded late	r Same						
121)	In so	oftware engin	eering, ac	ceptance testi	ing is als	known	as					
	(1)	black-box t					Alpha	testing	(4) Be	ta testing		
122)	Coh	Cohesion is a qualitative indication of the degree to which a module										
	(1)	can be writ										
	(2)	focuses on	ust one th	ing								
	(3)	is able to co	mplete its	function in a	timely n	anner						
	(4)			modules and			d(x, n/ba					
123)	Cycl	omatic comp	lexity is re	lated to which	n of the f	ollowing	testing m	nethods	,			
	(1)	White-box				(2)	Black-	box test	ing	7		
	(3)	White-box	and black	-box testing		(4)		onal-test				
124)	A sur	fficient condi	tion that a	triangle T be	e a right	triangle i	s that a^2	$+b^{2}+$	$= c^2$. An e	quivalent		
	(1)	If T is a rig	ht triangle	e then $a^2 + b^2 =$	$=c^2$							
	(2)	If $a^2 + b^2$	$= c^2$ then	r is a right tri	angle							
	(3)	T is a right	triangle o	nly if $a^2 + b^2 =$	$=c^2$							
	(4)	The second secon		nless $a^2 + b^2 = c^2$								
	co	galazion) . E 21									

	502	/A
125)	Consider the statement, "Given that people who are in need of refuge and consolation are and do odd things, it is clear that people who are apt to do odd things are in need of refuge	ot to and

	cons	olation." This staten	nent, of the for	$\operatorname{rm}(P \Rightarrow Q)$	$\Rightarrow (Q :$	$\Rightarrow P$)		
	(1)	People who are in					o odd things	
	(2)	People are apt to d						solation
	(3)	People who are ap						
	(4)	People who are in						
126)	Whic	ch of the following st	tatements is co	orrect?				
120)	(1)	A ripple counter is						
	(2)	In an asynchronou			cked b	v the same pul	se	
	(3)	An asynchronous						(46)
	(4)	Asynchronous inp						
127)	Whic	ch one of the followi	ng statements	is correct?				
stem o	(1) (2)	Abstraction is the c	lassification of	f objects, grou f objects, grou	iped ac	cording to the cording to their	r significant si r significant di	milarities fferences
	(3)	Abstraction is the	classification o	of objects, gr	ouped a	according to the	neir names	
	(4)	Abstraction is hidimanner	ng informatio	n inside a clas		at it can only b		abstract
128)		given function iskno fferential equation.	own only at so	me selected p			you would use	e to solve
	(1)	Euler method			(2)	modified Eu	ler method	
	(3)	Runge-Kutte Meth	nod		(4)	Simpson's R	ule = // (1	
129)	XML	validated against a	is a vali	d XML				
	(1)	DTD (2)	JQUERY		(3)	CFG	(4) Pars	ser
130)		ider the logical state e statement?			of the fo	ollowing state	ments is true a	bout the
	(1)	It is a Contradiction	n. or 4000 bps			It is a Tautolo		
	(3)	It is not a well form	ed statement		(4)	It is a Invers	e	
131)7	The me	ean of the distribution	n whose prob	ability densit	y funct	$f(x) = \begin{cases} f(x) = \begin{cases} f(x) & \text{if } x > 0 \end{cases} \end{cases}$	$ \alpha e^{-\alpha x}, x \ge 0 \\ 0, x < 0 $	is
	(1)	0 (2)	1		(3)	$1/\alpha$	(4)	α
				23				[P.T.O.
	_							

									502/A
132)	For a	poisson di	stribution						
	(1)	Mean = s	tandard de	viation				(2)	Mean = variance
	(3)	Mean = n	nean devia	tion				(4)	Mean = median
					livb				
133)	TheI	Eigen value	s of a matri	x are 1,2,-	1 then	the s	sum o	fEigen	values of the inverse of that matrix are
	(1)	0	(2)	1/2				(3)	2 (4) 4
134) dr or l	The p	possible Eig	envector o	f the matrix $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$	113861	#Offi	0]	so she	ponding to one of its Eigen value (-1) is $ \begin{bmatrix} -1 \\ 0 \\ 12 \end{bmatrix} $ (4) $ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} $
135)		e LU factor		ethod, to se	olve th	ne sys	stem	of equa	ations AX=B, we solve the system of
	(1)	First UX	=Y and the	en LY=B				(2)	First LY=B and then UX=Y
	(3)	First LY=	X and the	n UY=B				(4)	First UY=B and then LX=Y
136)		(a) f(b) <eated applic			root o	of the	e equ	ation	f(x) = 0 lies between a and b . The
	(1)	Newton-	Raphson r	nethod				(2)	Bisection method
	(3)	Secant m	ethod					(4)	LU decomposition method

(3) differentiable

(1) 1/y (2) 1/x

- (3) 1/(2x-1) (4) 1/(2y-1)

139)	$\int_{-1}^{1} \left(x - \left[2x \right] \right) dx =$					
	(1) 1	(2)	0	(3)	2 100000	(4) 4

140) Consider the following C declaration

int (*f)();

Which of the following statements correctly interprets the above declaration?

- (1) fis a function which returns an integer
- (2) f is a function which returns a pointer to an integer
- (3) fis a function to pointer which returns an integer
- (4) f is pointer to a function which returns an integer

141) Which of the following statements is false about DNS?

- (1) DNS uses TCP for its implementation
- (2) DNS uses both TCP and UDP for its implementation.
- (3) DNS is implemented as a distributed database system.
- (4) DNS maps internet domain name onto the IP address.

142) Which of the following is the correct sequence of the statements to be executed to insert a node after a node whose address is p? The pointer field nextptr points to the next node and the address of the new node is q.

- (1) p nextptr=q; q nextptr=p;
- (2) p □ nextptr=q; q □ nextptr=p □ nextptr;
- (3) q nextptr=p nextptr; p nextptr=q;
- (4) q nextptr=p nextptr; p nextptr=q nextptr;

143) A bit string, 0111101111101111110, needs to be transmitted at the data link layer. What is the string actually transmitted after the bit stuffing?

(1) 01111011111100111111100

(2) 01111011111100111111010

(3) 0111101111101111111000

(4) 011110011111011111100

144) A channel has a bit rate of 4000 bps and a propagation delay of 20 msec. For what range of frame sizes(S) (in number of bits) does stop-and-wait protocol give an efficiency of at least 50 percent?

(1) $S \le 160$

(2) S > 160

(3) $80 \le S \le 160$

(4) $S \ge 40, 20 \le S \le 30$

143)	VVIII	ch of the following	sliding window p	protocols ha	is the r	eceiver windov	w size more	than 1?
	(1)	Stop-and-wait pr	rotocol		(2)	One-bit wind	low protoc	ol
	(3)	Go-Back-N prot	cocol		(4)	Selective Re	peat protoc	ol
146)	Cons The	sider building a CSI signal speed in the	MA/CD network cable is 200,000	running at km/sec. W	1 Gbps	over a 1-km co	able with no	repeaters.
	(1)	10 ⁶ bits (2)	64 bytes		(3)	1250 bytes	(4) 12	25 bytes
147) Whic	ch one of the follow	ving statements is	incorrect a	bout C	ount-to-infinity	y problem?	
	(1)	It reacts rapidly t	o good news					
	(2)	It reacts slowly to	good news					
	(3)	It reacts leisurely	to bad news					
	(4)	Distance Vector F	Routing suffers fro	om Count-t	o-infini	ity problem		
148)	hosts	twork on the Internal it can handle?		ask of 255.2	255.24	0.0. What is the	e maximum	number of
	(1)	4096 (2)	3556		(3)	4080	(4) 40)94
149)	point respe	of time, the parametrively, at which ties of congestion wire	eters receiver's w me, the transmis	rindow, con sion of a pa	gestion cket re	n window are se esulted in a time	et to 1024K cout. What	B. 256KB
	(1)	1024KB, 256KB			(2)	1KB, 128KE	3	
	(3)	1KB,256KB			(4)	1024KB, 12	8Kb	
150)	Dyna	mic Host Configur	ation Protocol (I	OHCP) is us	ed to:	. 35000		
	(1)	assign CIDR subr	net masks to rout	ers				
	(2)	allocate the host p	oart of an IP addi	ess to a hos	st			
	(3)	assign the networ	k component of	an IP addre	ss to a	router		
	(4)	manage the assign	nment of MAC ac	ddresses				
			\in	Θ				